Pharmiweb ChannelsAll | PharmaCo | Clinical Research | R&D/BioTech | Sales/Mktg | Healthcare | Recruitment | Pharmacy | Medical Comms RSS Feed RSS Feeds RSS Feed PharmiWeb Candidate Blog RSS Feed PharmiWeb Client Blog


Press Release

Plasticell and CellSpring collaborate to validate osteogenic cell therapy and 3D cell culture models for high performance drug screening

Posted on: 19 Sep 16

Plasticell and CellSpring collaborate to validate osteogenic cell therapy

and 3D cell culture models for high performance drug screening

Stevenage, UK, 19 September 2016. Plasticell, the biotechnology company using combinatorial technologies for stem cell research and optimization of cell and gene therapy manufacturing, has announced it is collaborating with CellSpring, an innovative company that has developed a high throughput 3D cell culture system, the 3D Bloom® Biopolymer Platform, which enables more informed "stop/go" decisions for preclinical candidates.

Plasticell and CellSpring are developing tissue models using 3D Bloom Biopolymer seeded with hMSCs that are subsequently differentiated to bone, cartilage and brown/white fat tissue using CombiCult-derived differentiation media. 3D cultures of cells resemble natural tissues more closely compared to conventional 2D cultures grown on flat dishes. In particular, 3D tissues have more accurate biological responses to drug treatment and are used in the pharmaceutical industry to identify promising lead compounds in all stages of drug discovery.

Plasticell has used its proprietary Combinatorial Cell Culture™ (CombiCult®) platform to develop fully defined, highly effective media formulations to differentiate stem cells, for applications in drug discovery research and cell therapy. In particular, Plasticell has used the platform to develop media for rapid, reliable differentiation of human mesenchymal stem cells (hMSCs) to high quality osteocytes, chondrocytes and adipocytes (both white and brown), with a view to creating tissue models for drug screening and cell therapies.

While Plasticell’s osteogenic media formulation has been licenced to MilliporeSigma for research use only (marketed as OsteoMAX-XF), Plasticell has retained rights to use the formulation and derivatives to develop therapeutic products, such as a cell-based therapy for repair of bone fractures. The global bone grafts and substitutes market is estimated to be $2.5bn per year and growing rapidly.

“Testing Plasticell’s formulations in our system it became clear that impressive 3D bone structures were being formed,’ said Dr Chris Millan, co-founder and CTO of CellSpring. “After only a few days in culture we saw upregulation of osteogenic markers and morphological changes. The bone structures became white and opaque, whereas normally microtissues remain quite transparent to the naked eye, and after staining with Alizarin red we werebarely able to transmit light through them in order to image the cells - this is something we have never seen before using our system.‘

About Plasticell

Plasticell is a biotechnology company that specialises in using massively parallel screens to optimize cell culture, including the differentiation of stem cells and the manufacture of cell and gene therapies.

Its proprietary technology, Combinatorial Cell Culture™ (CombiCultTM), allows Plasticell to test cell culture variables in random combinations to discover optimal laboratory protocols for any given outcome in cell biology.

Plasticell forms strategic alliances with industry partners to facilitate drug discovery, cell and gene therapy applications.

For more information visit the Plasticell website:

For media enquiries, please contact Tristan Jervis on +44 203 735 8166 or e-mail:

Editor's Details

Tristan Jervis

Last updated on: 19/09/2016

Share | | |
Site Map | Privacy & Security | Cookies | Terms and Conditions is Europe's leading industry-sponsored portal for the Pharmaceutical sector, providing the latest jobs, news, features and events listings.
The information provided on is designed to support, not replace, the relationship that exists between a patient/site visitor and his/her physician.