Pharmiweb ChannelsAll | PharmaCo | Clinical Research | R&D/BioTech | Sales/Mktg | Healthcare | Recruitment | Pharmacy | Medical Comms RSS Feed RSS Feeds



Opportunities for the treatment of cancer, stroke

Posted on: 14 Feb 03


It is now well established that cellular suicide (apoptosis or programmed cell death) is central to a number of physiological cellular processes and is essential in the maintenance of homeostasis and
It is now well established that cellular suicide (apoptosis or programmed cell death) is central to a number of physiological cellular processes and is essential in the maintenance of homeostasis and survival of multicellular organisms. Equally, or perhaps even more important is the role of apoptosis in the pathogenesis of many human diseases. Apoptosis stimulators have emerged as key targets for the control of cancer. This therapeutic class has, however, remained predominantly experimental and of the 100 or so molecules in development as apoptosis agonists, approaching 70% of these remain in preclinical development. The low rate of clinical entry associated with these molecules is related to lack of specificity, low efficacy and/or susceptibility to drug resistance. These issues are being addressed as our understanding of the field evolves, and as a result, the identification and exploitation of new targets remains a considerable focus of attention - indeed the number of pro-apoptotic molecules in preclinical development has risen by about 10-fold since 1995 From a molecular point of view this field concentrated heavily on the caspases and endogenous inhibitors of apoptosis, predominantly Bcl-2 proteins. Over the past few years a considerable amount of research has been conducted and our view of apoptosis has changed dramatically. Major advances have included the emergence of the IAP ("Inhibitor of Apoptosis Proteins") family. This field has grown exponentially since 1995 and continues to do so. Although XIAP and survivin remain the better known members of this family, 8 human IAPs have now been identified. Members of this family represent perhaps the most important regulators of apoptosis by virtue of the fact that they intercept and regulate two convergent apoptotic pathways - the extrinsic (receptor-mediated) and intrinsic (mitochondria-mediated) pathway. Each of the IAPs has a distinct profile, with respect to their influence over apoptosis pathways, their mechanism of action and their regulation. Furthermore our increased understanding of apoptosis has lead to the emergence of members of the IAP family as therapeutic targets for the treatment of stroke and multiple sclerosis as well as cancer. In short the IAPs, if harnessed, will offer targeted and highly effective control over apoptosis and over diverse diseases. Considering the therapeutic importance of the IAP family, LeadDiscovery in collaboration with Martin Holcik from the University of Ottawa has produced a state of the art report of this field. The dossier opens with a general introduction to the apoptosis pathway which continues into a detailed characterization of the various member of the IAP family including an account of their involvement in apoptosis, their mechanism of action and their regulation. The involvement of apoptosis in cancer, stroke and angiogenesis (which plays a role in both of these conditions) as well as multiple sclerosis is then discussed with particular attention being given to the role of the IAP family in these diseases. Furthermore, available data describing the therapeutic effects of modulating family members and strategic insights into how modulation of IAP activity can be achieved is provided. The dossier then continues with an analysis of development activity in the field, profiling apoptosis agonists and antagonists in development. The report concludes with an assessment of patent activity surrounding the IAP family. In short this report provides an in depth view of this emerging therapeutic field offering a comprehensive analysis of the cellular biology, therapeutic activity and pharmaceutical potential of this recently emerging target. Following an expansion of LeadDiscovery's PharmaceuticalSolutions service we are now able to provide expert advice on medicinal chemistry surrounding the development of IAP modulators, chemical libraries of candidate modulators and screening services to assay such libraries. Consequently, this dossier like all of our dossiers not only offers a strategic insight into this field and an opportunity to expedite target selection but they can also be used as a platform from which to rapidly develop therapeutic candidates. Report highlights 60 pages+ analysis of the field of apoptosis and in particular the various members of the Inhibitor of Apoptosis family (IAP) family; pharmaceutical development activity surrounding apoptosis and; recent patent activity relating to the IAP family Publication date: January, 2003 About the contributors to this report Dr Martin Holcik: Dr Holcik holds a dual position at the Children’s Hospital of Eastern Ontario Research Institute and also as Assistant Professor within the Department of Pediatrics at the University of Ottawa. Dr Holcik has published extensively in the field of apoptosis and has contributed much of the data surrounding one of the most promising targets from this family, XIAP. Dr Jon Goldhill: Dr Jon Goldhill has over 10 years of academic and industrial research experience including 5 years in middle management at the French pharmaceutical giants, Sanofi-Synthelabo. Focussing on a variety of indications including inflammatory disorders, GI disease, Urological conditions and cancer, Dr Goldhill was responsible for target identification and project development. Dr Goldhill is now CEO and chief analyst at LeadDiscovery and coordinates the identification of candidate drug discovery projects with industrial potential. For more information, go to:

Dr Jon Goldhill

Last updated on: 27/08/2010 11:40:18

Site Map | Privacy & Security | Cookies | Terms and Conditions is Europe's leading industry-sponsored portal for the Pharmaceutical sector, providing the latest jobs, news, features and events listings.
The information provided on is designed to support, not replace, the relationship that exists between a patient/site visitor and his/her physician.